Publicado el

Conceptos básicos de Electricidad en instalaciones 12V (parte_3)

Conceptos básicos de Electricidad en instalaciones 12V

Vamos a seguir con esta serie de posts de conceptos básicos en instalaciones 12v y hoy me centraré en las baterías, la unión de baterías para distintos fines, como realizar las uniones y buenas practicas.

Bancada de Baterías

En el núcleo de cualquier sistema de 12v está la batería. Puede tratarse de una sola batería o de un grupo de baterías conectadas entre sí.

Las baterías se conectan entre sí para aumentar la tensión o la capacidad de la batería o las dos cosas.
Un grupo de baterías conectadas entre sí recibe el nombre de bancada de baterías.

Lo siguiente es de aplicación a las bancadas de baterías:

• Cuando se conectan dos baterías en serie la tensión aumenta.
• Cuando se conectan dos baterías en paralelo la capacidad aumenta.
• Cuando se conectan baterías en serie/paralelo la tensión y la capacidad aumentan.

Algunos ejemplos:

1 sola Batería
2 Baterías en Serie
2 Baterías en paralelo
4 Baterías en serie/paralelo

En las imágenes podemos ver claramente como la capacidad (Ah) y la tensión (V) aumenta según las conectamos entre si.

En baterías de ácido-plomo no se recomienda la unión de más de 4 baterías en serie/paralelo, debido a que se crea desequilibrio por las conexiones de cables y por las pequeñas diferencias en las resistencias internas de las baterías.

Cableado de baterías en paralelo

La forma en que se conecta la bancada de baterías al sistema es importante. Es fácil cometer algún error al hacer las conexiones de la bancada de baterías. Uno de los errores más frecuentes es conectar todas las baterías juntas en paralelo y luego conectar un lado de la bancada de baterías en paralelo a la instalación eléctrica, tal y como se indica en la siguiente imagen.

¿Cual es el problema de esta conexión?
La energía procedente de la batería de abajo solo pasará a través de los cables de la conexión principal. La energía de la siguiente batería tiene que ir por la conexión principal y atravesar los dos cables de interconexión hasta la siguiente batería. La siguiente batería tiene que atravesar 4 grupos de cables de interconexión. La de más arriba tiene que atravesar 6 grupos de cables de interconexión. Cada grupo de cables tiene su propia resistencia, que se va sumando. La batería de la parte superior proporciona mucha menos corriente que la de abajo.

El resultado es que la batería de abajo trabaja, se descarga y se carga en unas condiciones más exigentes, de modo que fallará prematuramente.

¿Por qué la resistencia del cable es importante en la conexión de bancadas de baterías? Recuerde que un cable es como una resistencia. Cuanto más largo es el cable, más resistencia presenta. Además, los terminales de los cables y las conexiones de la batería también aportarán resistencia.

La corriente siempre elegirá el camino de menor resistencia. Por lo que la mayor parte de la corriente irá por la batería de abajo. Solo una pequeña parte de la corriente irá por la batería de arriba.

Para conectar varias baterías en paralelo de forma correcta hay que asegurarse de que todo el recorrido que hace la corriente para entrar y salir de cada batería es igual.

Hay cuatro formas de hacerlo:

• Conectarlas en diagonal.
• Usar un borne positivo y uno negativo Las longitudes de los cables que van del borne a cada batería han de ser iguales.
• Conectarlas a medio camino. Asegúrese de que todos los cables tienen el mismo grosor.
• Usar barras de conexiones.

Conexionando la baterías de cualquiera de estos modos la corriente circulará por igual entre todas las baterías encontrando la misma resistencia en todos los tramos de cable por igual.

En la tienda disponemos de los cables y conexiones necesarios para realizar las uniones. Si no encuentras lo que necesitas también podemos hacerlo a medida.

Equilibrado de la Bancada de Baterías

Cuando se crea una bancada de baterías con una tensión más alta, como 24 V o 48 V, es necesario conectar varias series de baterías de 12 V. Pero hay un problema con la conexión en serie de las baterías, y es que las baterías no son idénticas en términos eléctricos.
Tienen pequeñas diferencias en la resistencia interna. De modo que, cuando se cargue una cadena de baterías en serie, esta diferencia de resistencia ocasionará una variación en las tensiones de los terminales de cada batería. Sus tensiones pasan a estar “desequilibradas”. Este “desequilibrio” aumentará con el tiempo y hará que una de las baterías esté continuamente sobrecargada y que otra tenga siempre una carga inferior. Por lo que una de las baterías de la cadena en serie fallará prematuramente.

Para comprobar si hay desequilibrio en su sistema:

• Carga la bancada de baterías.
• Mide hacia el final de la fase de carga inicial, que es cuando el cargador está cargando a plena corriente.
• Mide la tensión individual de una de las baterías.
• Mide la tensión individual de la otra batería.
• Compara las tensiones.
• Si hay una diferencia detectable entre ellas es que la bancada de baterías no está equilibrada

Para evitar el desequilibrio inicial de las baterías, asegúrate de cargar por completo cada una de las baterías antes de conectarlas en serie (y/o en paralelo). Para evitar el desequilibrio más adelante, según envejezcan las baterías, usa un equilibrador de baterías

El equilibrador de baterías se conecta al sistema como se indica en la imagen de la derecha. Mide la tensión de la bancada de baterías y la tensión de cada una de las baterías.
El equilibrador de baterías se activa en cuanto se empieza a cargar la bancada de baterías y la tensión de carga ha alcanzado más de 27,3 V. En ese momento, empezará a medir y comparar las tensiones de las dos baterías. Tan pronto como detecte una diferencia de tensión de más de 0,1 V entre las dos baterías, se encenderá una luz de aviso y empezará a equilibrarlas. Para ello, descarga la batería más alta extrayendo una corriente de hasta 0,7 A hasta que las tensiones de las dos baterías son iguales.

Para un sistema de 24 V solo se necesita un equilibrador de baterías. Y para uno de 48 V se necesitan tres equilibradores, uno entre cada dos baterías.

Y aquí lo dejamos por hoy, espero que te haya servido para aclarar dudas o descubrir algo que no sabías, como siempre cualquier duda o comentario puedes dejarlo aquí mismo y estaré encantado de poder responder.

Publicado el

Diámetro del cable de Batería

Cable 50mm

Le he puesto este anunciado al post por que comúnmente se le sigue llamando “diámetro” cuando se quiere hablar de la medida, grosor o sección de un cable, en el caso de hoy, de batería.

Vamos a ver hoy las secciones de los cables para batería, que sección elegir para una batería auxiliar, la batería de arranque y otras dudas comunes a este tema.

Los que nos dedicamos a esto y trasteamos habitualmente con cables, ya tenemos claro que los cables se clasifican en mm2 de sección, pero es muy normal que una persona no habituada en toquetear cables, cuando le llega el momento o la necesidad de tener que comprar un cable, coger un pie de rey o calibre y medir el cable por el exterior.

Como se mide el grosor de un cable

A diario tenemos consultas sobre las dudas que genera este tema y muy a menudo devoluciones en la tienda por confusiones de este tipo en la compra de cables.

Es por eso que hemos tomado la medida manualmente a todos los cables desde 10mm hasta 70mm y los hemos puesto en una tabla en todos los anuncios de cable en la tienda.
Esta es la tabla:

cuia para conocer la medida de un cable de batería

Hemos tomado las medidas con calibre a todos los cables, hemos medido desde el exterior incluyendo la funda de PVC y también hemos medido solo el cobre. Mirando esta tabla ya no debería de haber ninguna duda en reconocer la medida de un cable. Incluso hemos incluido la medida equivalente en AWG.

Solo como curiosidad, imagínate viendo ahora esta tabla, uno que abre el capó del coche y toma la medida del cable de su batería para sustituirlo, con un calibre comprueba que el cable es de 10mm, entra en nuestra tienda y claro, compra cable de 10mm. Menuda decepción cuando le llega el cable a casa, realmente necesitaba cable de 35mm2.

Esto ocurre en realidad demasiado a menudo

¿Que cable usar para las Baterías de servicio o auxiliares?

Cuando se instalan baterías de servicio en un coche, auto caravana o Camper, este tema del grosor del cable también genera muchísimas dudas.

El error más común es elegir el cable para unir estas baterías a razón del amperaje de las baterías.

La sección del cable para instalar baterías auxiliares en un automóvil, dependerá del alternador y no de las baterías.
El alternador del vehículo es el encargado de generar la corriente, según la potencia del alternador y la demanda de energía del propio vehículo este generará un amperaje u otro.

Como que las baterías auxiliares o de servicio nunca servirán para el arranque, el cable que se suele utilizar para la unión es de 10mm2 o 16mm2 de sección como máximo en alternadores comunes en coches y furgonetas.

Sección de cable en Baterías de Arranque

En el caso del cable de la batería de arranque del vehículo, aquí si que hay que tener en cuenta que en el momento del arranque el vehículo demanda una gran cantidad de corriente, normalmente por encima de los 100A.

Si tenemos que sustituir cables de la batería de arranque por que se han estropeado o por que llevamos la batería al maletero como en coches de competición, aquí si que los cables serán como mínimo de 25mm2 de sección pero en algunos casos de hasta 50mm2. La recomendación exacta es mejor hacerla según características técnicas de cada vehículo.

Amperaje que soportan los cables de Batería

Esto es muy simple y solo hay que seguir lo que ponemos en esta tabla.
Según el amperaje que circulará por la instalación podremos elegir una sección de cable o otra.
Esto se refiere a intensidad máxima pero tal y como hemos contado en anteriores posts, hay que tener en cuenta las resistencias y caídas de tensión.

Pues esto es todo por hoy, espero que esto sirva de guía para nuestros proyectos y como siempre cualquier duda o comentario estare encantado de responder.

Publicado el

Conceptos básicos de Electricidad en instalaciones 12V (parte_2)

Conceptos básicos de Electricidad en instalaciones 12V

Seguimos con esta serie de posts en los que hablamos de conceptos básicos a tener en cuenta si trasteamos a menudo con instalaciones a 12v.

Hoy nos centraremos en conocer más sobre resistencia y sobretodo en caídas de tensión, como calcularlas y tratar de evitarlas al máximo.

Resistencia del cable y Caídas de tensión

Como ya explicamos, la corriente que pasa por un circuito eléctrico para una carga fija es diferente según la tensión del circuito. Cuanto mayor sea la tensión, menor será la corriente.

I = P / V

En esta imagen podemos ver un ejemplo de la cantidad de corriente que pasa por tres circuitos diferentes en los que la carga es la misma, pero la tensión de la batería cambia:

Además, como ya hemos visto, una cable tiene una resistencia determinada. El cable forma parte del circuito eléctrico y puede considerarse como una resistencia.

Cuando la corriente pasa por una resistencia, ésta se calienta. Lo mismo pasa con los cables, cuando la corriente pasa por ellos, se calientan. Se pierde potencia en forma de calor. Estas pérdidas reciben el nombre de pérdidas del cable.

Otra consecuencia de las pérdidas del cable es que se generará una caída de tensión a lo largo del cable. La caída de tensión se puede calcular con la siguiente fórmula:

Tensión = Resistencia x Corriente
V = R x I

Ejemplo de cálculo de caída de tensión

Ahora vamos a usar en ejemplo práctico en el que un inversor está conectado a una batería de 12 V para calcular las pérdidas del cable.

En este diagrama se puede ver un inversor de 2400 W conectado a una batería de 12 V con dos cables de 1,5 m de longitud y 16 mm2 de sección.

Como ya aprendimos antes, cada cable tiene una resistencia de 1,6 mΩ.

Con estos datos, se puede calcular la caída de tensión de un cable:

  • Una carga de 2400 W a 12 V crea una corriente de 200 A
  • La caía de tensión de un cable es: V = I x R = 200 x 0,0016 = 0,32 V
  • Como tenemos dos cables, la caída de tensión total del sistema es de 0,64 V

Debido a la caída de tensión de 0,6 V, el inversor ya no recibe 12 V, sino 12 – 0,6 = 11,4 V.
La potencia del inversor es una constante en este circuito. De modo que cuando cae la tensión en el inversor, la corriente aumenta.
Recordemos que I = P/V.
Ahora la batería suministrará más corriente para compensar las pérdidas.
En este ejemplo, esto significa que la corriente subirá hasta 210 A.
Esto hace que el sistema sea ineficiente porque hemos perdido el 5% (0,64 / 12) de la energía total. Esta energía perdida se ha transformado en calor.

Es importante que esta caída de tensión sea lo más baja posible.
La forma obvia de reducirla es aumentar el grosor del cable o acortarlo tanto como sea posible.

No solo el Cable ofrece resistencia en un circuito

Es importante tener en cuenta que no solo el cable presenta resistencia. Cualquier otro elemento que la corriente tenga que atravesar en su camino creará una resistencia adicional.
En esta lista se incluyen elementos que pueden contribuir a incrementar la resistencia total:

  • Grosor y longitud del cable
  • Fusibles
  • Derivadores
  • Interruptores
  • Montaje de terminales de cables
  • Conexiones

Y prestar especial atención a:

  • Conexiones flojas
  • Contactos sucios o con corrosión.
  • Terminales de cables mal montados.

Se añadirá resistencia al circuito eléctrico con cada conexión que se haga, o con cada cosa que se coloque en el camino entre la batería y el inversor.

Para hacerse una idea de qué pueden suponer estas resistencias:

  • Cada conexión de cable: 0,06 mΩ.
  • Derivador de 500 A. 0,10 mΩ.
  • Fusible de 150 A: 0,35 mΩ.
  • Cable de 2 m y 35mm2 : 1,08 mΩ.

Efectos negativos en las caidas de tensión del cable

Ya sabemos que es necesario limitar la resistencia de in circuito para evitar caídas de tensión. Pero ¿qué efectos tiene una caída de tensión fuerte en un sistema? Estos son algunos de ellos:

  • • Se pierde energía y el sistema es menos eficiente. Las baterías se descargarán más rápido.
  • Aumentará la corriente del sistema. Esto puede hacer que los fusibles CC se fundan.
  • La presencia de corrientes altas en el sistema pueden provocar sobrecargas prematuras del inversor.
  • Si se produce una caída de tensión durante la carga, las baterías no se cargarán del todo.
  • El inversor recibe una tensión de la batería más baja. Esto puede activar alarmas de baja tensión.
  • Los cables de la batería se calientan. Esto puede hacer que el aislante de los cables se derrita o causar daños en los conductos de los cables o en el equipo que forma parte del sistema. En casos extremos, el calentamiento de los cables puede ocasionar un incendio.
  • Todos los dispositivos conectados al sistema tendrán una vida más corta debido a la ondulación CC.

Para evitar las caídas de tensión:

  • Usa cables de la menor longitud posible.
  • Usa cables con suficiente grosor.
  • Aprieta las conexiones (pero no demasiado, sigue las recomendaciones de torsión del manual).
  • Comprueba que los contactos están limpios y no presentan corrosión.
  • Usa terminales de cable de calidad y móntalos con la herramienta adecuada (crimpadora).
  • Usa interruptores de aislamiento de baterías de calidad.
  • Limita el número de conexiones de cada tramo de cable.
  • Utiliza puntos de distribución o barras de conexiones CC.

Pues hasta aquí lo dejamos hoy, el próximos capítulos de esta serie de conceptos básicos, hablaremos de secciones de cable y uniones de baterías.

Recuerda que para cualquier duda o sugerencia puedes contactar aquí con nosotros.

Publicado el

Booster, Cargador de Batería Auxiliar

Hoy hablaremos de los cargadores de batería auxiliar, también llamados Booster y intentaremos explicar las diferencias entre cargar la o las baterias auxiliares en Camper o Auto Caravana con cargador booster o con Relé, cuando es suficiente con un relé y cuando es necesario un cargador Booster.

Vamos a empezar por el principio…

¿Que es un cargador Booster?

No hay que confundir un arrancador de baterías Booster con un cargador de baterías Booster.
Un cargador de baterías auxiliares Booster es un equipo electrónico capaz de coger la intensidad de carga del alternador del vehículo y generar una gran intensidad de carga hacia la batería auxiliar, los cargadores más eficientes producen entre 25 y 40 Amperios POR HORA directos a la batería auxiliar, con lo que en poco tiempo o pocos kilometros podremos cargar por completo las baterías.

Los mejores equipos del mercado dan toda la carga incluso con el motor en relentí, además ajustan la carga al tipo de batería que tengamos (AGM o GEL o Ácido) y regulan la corriente de flotación desconectando cuando las baterías se encuentran cargadas y además protege a la del motor si fuera necesario, si la misma tiene un consumo muy alto como luces o aire acondicionado para no sobrecargarlas.

Hay mucha variedad de cargadores Booster en el mercado, los más sencillos en ocasiones no son más que inversores CC-CC y pueden funcionar bien aunque estos no regulan la intensidad de la carga según el estado de la batería si no que cargan siempre con la misma intensidad pudiendo estropear las baterías a la larga.

cargador de baterias booster nds

Cargador Booster para Camper o Auto-Caravana


Los cargadores de batería Booster de mayores prestaciones como puede ser el CARGADOR DE BATERÍAS NDS PLUS 30/40 son cargadores con microprocesador que dividen la carga en 5 fases distintas, con proceso de desulfatación y fase final de mantenimiento de batería. Realizando una carga a 30 o 40 amp./hora según modelo y manteniendo la estabilidad de la batería ya sea de ácido, Gel o AGM.
Además dependiendo del modelo, es capaz de recibir señal hasta de 3 fuentes distintas. alternador del motor, placa solar y red eléctrica 220V.

¿Cuando es necesario un cargador Booster?

La respuesta es depende…
Siempre que queramos cargar de forma eficiente una o varias baterías auxiliares, podremos instalar un cargador de baterías Booster y nos aseguraremos de una carga extra rápida y eficiente, pero esto tiene un precio que puede oscilar entre los 200€ y 500€ dependiendo del equipo y esto en según que caso nos puede hacer pensar si necesitamos este equipo o si podemos prescindir de el y pasar a otros sistemas de carga de baterías como puede ser la instalación de un Relé Automático o no, o un simple desconectador de baterías.

Una razón de peso para decidirnos por instalar el cargador Booster es si nuestro vehículo es moderno y dispone de sistema de alternador inteligente con start-stop, en este caso estamos casi obligados a utilizar el sistema de cargador Booster pues con sistemas de Relé la carga de las baterías auxiliares no está garantizado el buen funcionamiento.

Otro motivo de peso es en el caso de que la batería auxiliar sea de mayor capacidad que la batería de motor, como ya hemos contado en otros posts, si la batería auxilar es de mayor capacidad, con el sistema separador de baterías con Relé, la carga total de estas baterías no está garantizada, recordemos que el relé de alguna manera reconoce la carga máxima de la batería de motor como límite de carga y deja de enviar corriente hacia la auxiliar de manera que si la capacidad de la batería del motor es por ejemplo de 70Amp el relé pasará corriente a la auxiliar con normalidad hasta “copiar” esta capacidad, y si la batería auxiliar es de 120Amp solo con la ayuda del relé no la podremos cargar al 100%

En resumen:

  • Es casi obligatorio un cargador de baterías Booster en vehículos modernos con alternador inteligente.
  • Es muy recomendable un cargador Booster cuando la batería auxiliar es de mayor capacidad que la batería motor.
  • Es muy recomendable un cargador Booster si queremos máxima autonomía.
  • Si no reúnes ninguno de los anteriores puntos y te “duele” gastar entre 200 y 500€ la mejor alternativa es instalar un Relé 😉

¿Como instalar un cargador de Baterías Booster?

La instalación de un cargador Booster puede ser bastante sencilla o un poco más complicada dependiendo del modelo y de si simplemente va conectado entre las baterías o si debe ir también conectado a la centralita, en este último caso si que serán necesarios unos conocimientos más expertos en temas de centralita, pero si no, con unos conceptos básicos en electricidad será suficiente.

Hay que tener en cuenta como siempre proteger los equipos con los fusibles pertinentes, las secciones de los cables entre baterías siempre recomendamos cable de 16mm2 de sección.

Puedes ver los modelos disponibles en la tienda:

Y hasta aquí el tema de hoy, como siempre si te queda cualquier duda o tienes algún comentario puedes escribir aquí mismo y estaremos encantados de responder.

Publicado el

Conceptos básicos de Electricidad en instalaciones 12V (parte_1)

Conceptos básicos de Electricidad en instalaciones 12V

En este post y en algunos más que vendrán, vamos a intentar explicar los conceptos básicos del cableado en sistemas eléctricos y especialmente en instalaciones con baterías, inversores de corriente, cargadores.

Hablaremos de la importancia de ‘hacerlo bien’ y de los problemas que pueden aparecer si un sistema tiene un cableado inadecuado. También ayudará a instaladores y usuarios a resolver los problemas que puedan surgir por un mal cableado.

Para que un sistema eléctrico funcione adecuadamente, y en especial aquellos que contienen un inversor/cargador y baterías, que son dispositivos de ‘alta corriente’, es fundamental que el cableado del sistema se realice correctamente.

Podrás aprovechar mejor este contenido si tienes algunos conocimientos teóricos básicos sobre electricidad. Esto te ayudará a entender los factores que determinan el grosor de los cables y los tipos de fusibles. Si ya tienes unas nociones básicas, quizá puedas saltarse este capítulo, pero te recomendamos que por lo menos lo leas.

La Ley de Ohm

La ley de Ohm es la más importante de un circuito eléctrico. Es la base de casi todos los cálculos eléctricos.
Permite calcular la corriente que atraviesa un cable (o un fusible) a diferentes tensiones. Es fundamental saber cuánta corriente circula por un cable para poder elegir el cable correcto para cada sistema.

Pero primero es necesario entender algunos conceptos básicos sobre la electricidad.

La electricidad es el movimiento de los electrones en un material,
llamado conductor. Este movimiento genera una corriente eléctrica. Esta
corriente se mide en amperios, que se representan con la letra A.
La fuerza necesaria para que los electrones fluyan se llama tensión (o
potencial). Se mide en voltios, que se representan con la letra V
Cuando la corriente eléctrica pasa a través del material encuentra cierta
resistencia. Esta resistencia se mide en ohmios, que se representan con la letra griega Ω.

La tensión, la corriente y la resistencia están relacionadas entre sí.

• Cuando la resistencia es baja, se mueven muchos electrones y la corriente es alta.
• Cuando la resistencia es más alta, se mueven menos electrones y la corriente es menor.
• Cuando la resistencia es muy alta, no se mueve ningún electrón y la corriente se detiene.

Se puede decir que la resistencia de un conductor determina la cantidad de corriente que atraviesa un material a una tensión concreta. Esto puede expresarse con una fórmula conocida como la Ley de Ohm.

Potencia

La Ley de Ohm describe la relación entre resistencia, corriente y tensión. Pero hay otra unidad eléctrica que puede obtenerse de la Ley de Ohm: la potencia.

La potencia representa la cantidad de trabajo que puede hacer una corriente eléctrica.
Se mide en vatios y se representa con la letra P.
Se puede calcular con la siguiente fórmula:

De la ley de Ohm se pueden obtener otras fórmulas.Algunas de estas fórmulas son muy útiles para calcular la corriente de los cables.

Una de las fórmulas muy usadas es:

Esta fórmula permite calcular cuánta corriente atraviesa un cable cuando la tensión y la potencia son conocidas.

Ejemplo de aplicación:
Pregunta:
Si se tiene un batería de 12 V conectada a una carga de 2400 W.
¿Qué intensidad de corriente pasa por el cable?
Respuesta:
V = 12 V
P = 2400 W
I = P/V = 2400/12 = 200 A

Conductividad y Resistencia

Algunos materiales conducen la electricidad mejor que otros. Los materiales con poca resistencia conducen bien la electricidad, mientras que los materiales con una alta resistencia conducen mal la electricidad, o ni siquiera la conducen.

Los metales presentan una baja resistencia y conducen bien la electricidad. Estos materiales se denominan conductores. Por esta razón se emplean en los cables eléctricos.

El plástico y la cerámica presentan una resistencia muy alta y no conducen la electricidad en absoluto. Se les llama aislantes. Por esto es por lo que se usan materiales no conductores, como plástico o goma, en el exterior de los cables. El contacto con el cable no provoca una descarga eléctrica porque la electricidad no puede trasladarse a través de estos materiales.
Los aislantes también se usan para evitar cortocircuitos cuando dos cables se tocan.

Hay otros dos factores que determinan la resistencia del cable. Se trata de la
longitud y el grosor del conductor (el cable):
Un cable fino tiene más resistencia que un cable grueso de la misma
longitud
.
Un cable largo tiene más resistencia que un cable corto del mismo grosor.

Es importante conocer la resistencia del cable. Cuando pasa corriente por un cable, su resistencia provoca estos dos efectos:
Caída de tensión (pérdida) a lo largo del cable.
Calentamiento del cable.

Si la corriente aumenta, estos efectos se intensifican. Un aumento de la corriente incrementará la caída de tensión y hará que el cable se caliente aún más.

Conclusión:
Tanto el grosor como la longitud del cable tienen un efecto considerable en la resistencia del cable.

Es por eso la importancia en la elección correcta de la sección del cable a utilizar en una instalación y también su longitud.

Bien, aquí lo dejamos hoy, puede que todo esto te haya parecido un poco “tostón” pero son conceptos básicos que hay que conocer o por lo menos saber que existe y tener algunas nociones básicas.

En el próximo post relacionado hablaremos de caídas de tensión y de como calcularlas, de elección de sección de cable correcta, de bancadas de baterías en serie y en paralelo y algunas cosas más. Si os interesa el tema estar atentos a los próximos capítulos.

Y como siempre, para cualquier duda o comentario puedes dejarlo aquí mismo y estaremos encantados de poder ayudarte.

Publicado el

Guía de Montaje para Conector de Potencia MTA Estanco

Hoy vamos a ver como montar este conector de potencia paso a paso por que aunque parece un proceso sencillo, este conector nos llega con un montón de piezas cuando lo adquirimos, entre guías, pasadores, gomas estancas, terminales…etc, normalmente tenemos muchas consultas pidiendo un manual de montaje que este conector no trae.
Así pues, este post servirá de guía para futuros montajes que lo precisen.

Antes de nada, decir que este robusto conector se puede adquirir con 3 medidas diferentes de terminales desde el terminal para cables de 1mm hasta para cable de 16mm. Por lo que es un conector que podrá permitir trabajar con circuitos con hasta 75A de corriente.
Además al llevar juntas y tapones de goma adquiere una estanqueidad de IP65 frente a polvo y agua o líquidos con lo que lo podremos instalar en circuitos que así lo precise.

Componentes incluidos en el Conector

El conjunto del conector incluye:

  • Conector Macho y Hembra
  • Terminales Macho y Hembra
  • Fijadores de terminal (piezas amarillas)
  • Gomas estancas para cable/terminal
  • Fijadores para gomas (piezas azules)

Crimpado de los terminales con Gomas

El primero de los pasos a realizar puede ser el crimpado de los terminales macho y hembra en sus cables correspondientes. Antes de crimpar el terminal, deberemos introducir la goma azul para estanqueidad por el cable y después crimpar el terminal al cable dejando la goma insertada.

Insertando los Terminales en los Conectores


En este punto ya podremos introducir los terminales en el conector, los machos en el porta-machos y los hembra en el porta-hembras, como siempre introducirlos hasta escuchar el “clic” que nos indica que el terminal está bien insertado.

Una vez los terminales están bien introducidos en el conector, es el momento de insertar el fijador de terminales, que es esta pieza de plástico amarilla que ves en la imagen. Este fijador como su nombre indica, una vez introducido, acciona unas pestañas para impedir que el terminal salga para atrás aunque tiremos fuerte de los cables.
Tanto el conector macho como el hembra llevan la misma pieza que una vez montada quedará como en la imagen.

Insertar las juntas de goma Estancas en el Conector

Una vez tenemos los terminales insertados y los fijadores de terminal también fijados en su lugar, es el momento de introducir las juntas de goma azules que hemos pasado por el cable antes de crimpar los terminales.
Las introduciremos en el conector apretando con fuerza hasta que queden insertadas hasta el borde del conector.

Y cuando ya estén las gomas en su lugar, podremos colocar las piezas azules que sirven para fijar las gomas y impedir que estas puedan salir de su lugar.

Quitar los terminales del conector

En caso de tener que quitar alguno de los terminales, es una operación relativamente sencilla, primero hay que retirar el seguro de plástico amarillo que fija los terminales y una vez el seguro está fuera, solo hay que fijarse que en uno de los lados del terminal hay una pequeña pestañita de plástico que es la que retiene el terminal ahí fijo.
Con un destornillador plano y fino o una herramienta similar, simplemente moveremos esa pestaña y a la vez tiraremos suave del cable.

Esto es todo, como puedes ver no es nada complicado pero al llevar varias piezas cuando es la primera vez que montamos este conector puede ser algo confuso hasta que no relacionas todas las piezas.
Espero que esta guía te sirva de ayuda para no perder nada de tiempo y poder avanzar en tu trabajo eficazmente.

Como siempre, cualquier duda o comentario estaré encantado de poder responder.

Publicado el

Calcular la Autonomía de una Batería

Calcular la Autonomía de una Batería

Tenemos muchas consultas relacionadas con la autonomía de las baterías sobretodo relacionadas con el sector del mundillo Camper y Auto Caravanas. Todos queremos saber que autonomía podemos tener en nuestros vehículos, sobretodo cuando hablamos de baterías auxiliares de las cuales dependeremos cuando estaremos acampados con ciertos consumos eléctricos como pueden ser, bombas de agua, frigoríficos, luces…etc y solo dependeremos de una o varias baterías y sin posibilidad de conexión a la red eléctrica.

Las consultas más comunes y habituales son:

¿Cuantas horas durara una batería de 90 Amperios con el frigorífico encendido?

¿Con una batería AGM de 100A podré estar un fin de semana acampado sin necesidad de conectar a la red eléctrica?

Tengo una batería de 150Ah a la que le conecto una bomba de agua, cargadores móviles, tostadora, TV y ordenador portátil. ¿ cuantos días puedo pasar con esta batería cargada al 100%?

Estas 3 consultas son reales y las he seleccionado entre otras muy parecidas y todas de esta última semana. Quiero decir con esto que es un tema muy recurrente y que preocupa a muchos y que realmente lo que hay es falta de información.

No son preguntas fáciles de responder por que depende de varias cosas y con muchas variables, pero si que hay fórmulas matemáticas con las que con los datos pertinentes poder calcular la duración de una batería.

Fórmula para calcular la autonomía de una Batería

Hay una fórmula muy sencilla para calcular las horas que va a durar una batería según los consumos que estén conectados a ella.

La explico al detalle:
(Vb) es el Voltaje de la batería multiplicado por (Ib) intensidad de la batería nos dará la potencia de la batería (Wb)
(Vb) voltaje de la batería multiplicado por (Ic) la corriente consumida, nos dará (Wc) potencia consumida.
El resultado (Wb) potencia de la batería dividido por el resultado (Wc) potencia consumida, nos dará las horas de duración de la batería.

Ejemplo práctico del calculo de la duración de una batería.

Este sería un ejemplo práctico de calcular la autonomía de una batería según el consumo que tengamos y según la fórmula descrita anteriormente.

Supongamos que tenemos una batería AGM 12 Voltios de 80Ah (amperios/hora) con la que queremos saber cuantas horas de autonomía tendrá si solo tenemos conectado un frigorífico 12v y que tiene un consumo de 7A (amperios).

Siguiendo la fórmula anterior, multiplicaremos el Vb (voltaje de la batería) 12 (voltios) por Ib (la corriente de la batería en Ah) en este caso 80, y nos daría un resultado de 960W

Por otro lado multiplicamos de nuevo Vb (voltaje de la batería) 12 (voltios) por Ic (corriente consumida) que en este caso hemos dicho que es de 7 Amperios , y esto nos dará un resultado de 84W de potencia.

Ahora dividiremos los resultados de las 2 operaciones, 960W de la primera operación dividido por 84W de la segunda operación, nos dará un resultado de 11,42 horas .


Resultado de calcular la autonomía de una batería: Con la batería de 80Ah cononectada a un frigorífico de 12V y 7A de consumo, tendremos una autonomía de 11 horas y 42 minutos.

Este resultado tenemos que cogerlo con “pinzas” por que es muy relativo, una cosa es una fórmula matemática y otra es la realidad, donde dependerá de que la batería esté al 100% de su capacidad, de que este consumo del frigorífico es relativo por que no siempre estará encendido el motor, por que depende de la instalación eléctrica habrán unas perdidas de tensión…etc
Pero si que es una forma bastante precisa (tampoco tenemos otra) de calcular según los consumos, la duración de la batería.

En esta fórmula he utilizado la potencia de consumo del circuito eléctrico en Amperios por que así lo exige la fórmula. He dicho que el frigorífico tiene una potencia de 7 Amperios. Pero normalmente las características de los aparatos, la potencia viene indicada en watios (W) ¿como saber los amperios (A) si solo conocemos los vatios(W) ?

Fórmula para saber los Amperios si solo conocemos los Vatios

En ocasiones necesitamos saber la intensidad de un circuito (amperios) pero la etiqueta del fabricante solo nos indica su potencia en W (vatios).
Con esta fórmula podremos solucionarlo.

Intensidad (amperios) es igual a la poténcia (W) dividido por la tensión (V)

Es decir y siguiendo con el ejemplo anterior del frigorífico, la etiqueta del fabricante solo nos dice que el frigorífico funciona con una tensión de 12v con una potencia de 84W.
Para saber la intensidad en Amperios dividiremos según la fórmula 84 (W) por 12 que es el voltaje y nos da un resultado de 7 que será la intensidad en Amperios.

Pues esto es todo lo que queríamos contarte hoy sobre este tema. Como siempre puedes dejar aquí cualquier tipo de duda o comentario al respecto.
Si conoces otra forma de realizar este cálculo o crees que faltaría añadir aquí algún detalle más a tener en cuenta, por favor, deja aquí tu comentario y estaremos encantados de compartirlo.